Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Shipin Kexue / Food Science ; 43(5):346-355, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-20244871

ABSTRACT

As an important immuneoactive component in eggs, yolk immunoglobulin (IgY) shows great competitiveness in research and production due to its good stability, high safety, low cost, easy availability, strong immune activity, and no drug resistance. This article highlights the significant advantages of IgY as a good antibiotic substitute in the prevention and treatment of viral and bacterial diseases. Also, IgY has great potential in the regulation of nutrient metabolism balance, intestinal microflora and immune homeostasis by affecting key rate-limiting enzymes, and relevant receptors and inflammatory factors specifically. Proper diet and targeted delivery of foodborne IgY may be a new perspective on inflammation regulation, disease control, nutritional balance or homeostasis, and oral microencapsulated IgY is expected to be a new approach against increasing public health emergencies (such as COVID-19 pandemic).

2.
Indonesian Journal of Cancer Chemoprevention ; 13(3):195-206, 2022.
Article in English | CAB Abstracts | ID: covidwho-20239622

ABSTRACT

COVID-19 is an infectious disease caused by Severe Acute Respiratory Syndrome (SARS-CoV-2), causing a global health emergency as a pandemic disease. The lack of certain drug molecules or treatment strategies to fight this disease makes it worse. Therefore, effective drug molecules are needed to fight COVID-19. Non Structural Protein (NSP5) or called Main Protease (Mpro) of SARS CoV 2, a key component of this viral replication, is considered a key target for anti-COVID-19 drug development. The purpose of this study is to determine whether the compounds in the Melaleuca leucadendron L. plant such as 1,8-cineole, terpene, guaiol, linalol, a-selinenol, beta-eudesmol and P-eudesmol are predicted to have antiviral activity for COVID-19. Interaction of compounds with NSP5 with PDB code 6WNP analyzed using molecular docking with Molegro Virtual Docker. Based on binding affinity, the highest potential as an anti-viral is Terpineol with binding energy (-119.743 kcal/mol). The results of the interaction showed that terpinol has similarities in all three amino acid residues namely Cys 145, Gly 143, and Glu 166 with remdesivir and native ligand. Melaleuca leucadendron L. may represent a potential herbal treatment to act as: COVID-19 NSP5, however these findings must be validated in vitro and in vivo.

3.
Biosciences, Biotechnology Research Asia ; 19(4):875-879, 2022.
Article in English | CAB Abstracts | ID: covidwho-20234871

ABSTRACT

The world has faced huge challenges throughout the endemic of COVID-19. The survivors of Covid too are facing health difficulties. The non-availability of specific treatments made researchers search for all the possible treatment regimens including traditional medicines. India has the greatest culture of Ayurveda. Indian government's AYUSH ministry has granted permission for use of ancient systems of medicine for treatment of some of the COVID-19 cases, especially which are not at advanced stages. Along with this certain reports are there which have shown the positive outcomes of Ayurvedic treatment of COVID-19. However, it is more beneficial to build the immune system of the host from a large population and its health perspective to avoid widespread infection and control the potency of the infectious viral particles. A vaccine can offer protection by boosting specific immunity in the host at the same time non-specific ways to improve host immunity are suggestible. This has carved a path for the use of ancient Indian therapeutic methods such as Ayurveda and Yoga. Although there are many general articles where the home remedies have suggested but, more scientific references are required to document the ayurvedic medicines for Covid related ailments. In this review, an attempt is made to organize available evidences of usefulness of Ayurveda, Yoga, in COVID-19.

4.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(10):1076-1083, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2323056

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly discovered enteric coronavirus, is the etiological agent that causes severe clinical diarrhea and intestinal pathological damage in piglets. In this study, Vero E6 and IPI-2I cells were pretreated with different concentrations of glycyrrhizin (GLY) for 2 hours, and then infected with different concentrations of SADSCoV, aiming to investigate the inhibitory effect of GLY on SADS-CoV. Western blot and TCID50 results revealed a significantly decreased N protein expression and viral titer, indicating that GLY can inhibit the infection of SADS-CoV. Vero E6 and IPI-2I cells were pretreated with different concentrations of GLY for 2 hours and infected with SADS-CoV. Western blot results showed that when the concentration of GLY was 0.8 mmol/L, the expression of N protein decreased significantly, indicating that GLY inhibited the invasion of the virus. At first, cells were treated with 0.4 mmol/L GLY, and cell samples were collected at 2 hours, 6 hours and 12 hours after being infected with SADS-CoV for analysis, and the expression of N protein were found to be significantly reduced at all points, indicating that GLY had a significant inhibitory effect on the replication of the virus. GLY is a competitive inhibitor of high mobility group box 1 (HMGB1), and the receptors of HMGB1 mainly include TLR4 and RAGE. Based on this fact, the mutant plasmid at the key sites of HMGB1 (C45S, C106S, C45/106S) and the siRNA of the RAGE receptor were transfected to Vero E6 cells and infected with SADS-CoV, and the cell supernatant and samples were harvested. The western blot and TCID50 results showed that the expression of N protein and the virus titer were decreased, suggesting that GLY exerts its function by affecting the binding of HMGB1/TLR4/RAGE during SADS-CoV infection. To further explore the signaling pathway through which GLY functions, Vero E6 and IPI-2I cells were inoculated with SADS-CoV, and cell samples were harvested, western blot was used to detect the changes of MAPK proteins. The results showed that the protein expression levels of p-p38, p-JNK and p-ERK were up-regulated in the early and late stages, indicating that the MAPK pathway was activated by SADS-CoV infection. Vero E6 and IPI-2I were pretreated with different concentrations of GLY and TLR4 inhibitor TAK for 2 hours and infected with SADS-CoV. Protein samples were harvested and analysed by western blot which showed a decreased p-JNK and N proteins, while other proteins showed no significant changes. These results indicated that GLY and TAK regulated the phosphorylation of JNK but did not regulate the phosphorylation of p38 and ERK. Also, Vero E6 cells were treated with HMGB1 antibody, the siRNA of HMGB1 and HMGB1 mutants plasmid, and infected with SADS-CoV. Protein samples were harvested, western blot results showed that phosphorylation of JNK decreased, indicating that HMGB1 affected JNK phosphorylation. Finally, Vero E6 and IPI-2I cells were pretreated with different concentrations of JNK inhibitor SP600125 to infect SADS-CoV, western blot, TCID50 and IFA results showed that the expression of N protein and virus titer, as well as virus replication were reduced, indicating that SP600125 inhibited virus replication. In conclusion, our results revealed that GLY can inhibit in vitro replication of SADS- CoV, mainly through the HMGB1/TLR4/JNK signaling pathway. The discovery of this pathway provides theoretical support for the research of novel anti-SADS-CoV drugs.

5.
Journal of the Chilean Chemical Society ; 67(3):5656-5661, 2022.
Article in English | CAB Abstracts | ID: covidwho-2326837

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China, in December 2019 and quickly spread across the worldwide. It becomes a global pandemic and risk to the healthcare system of almost every nation around the world. In this study thirty natural compounds of 19 Indian herbal plants were used to analyze their binding with eight proteins associated with COVID -19. Based on the molecular docking as well as ADMET analysis, isovitexin, glycyrrhizin, sitosterol, and piperine were identified as potential herbal medicine candidates. On comparing the binding affinity with Ivermectin, we have found that the inhibition potentials of the Trigonella foenum-graecum (fenugreek), Glycyrrhiza glabra (licorice), Tinospora cordifolia (giloy) and Piper nigrum (black pepper) are very promising with no side-effects.

6.
Journal of the Cameroon Academy of Sciences ; 18(Suppl):548-557, 2022.
Article in English | CAB Abstracts | ID: covidwho-2320950

ABSTRACT

Facing the unprecedented burden and rapid spread of the Covid-19 pandemic across the globe, responses from various regions have been exceptionally quick. Drug discovery has been essentially based on repurposing, particularly at the onset of the scourge. Several experimental models have been designed ranging from in vitro cell culture systems to nonhuman primates;however, each with advantages and limitations. It was revealed beside its detrimental consequences on health, economy and the society, Covid-19 has also provided opportunity to highlight the immense potential of traditional medicine as a valid alternative for addressing major health threat. The African traditional medicine has been instrumental for the control of the COVID-19 pandemic in the continent, in situation of extremely low vaccination coverage. For optimal and sustainable use of traditional medicine, we strongly recommend products be developed following the WHO standards, while taking into consideration sustainability, environmental protection and copyright issues surrounding the natural product-based drug research and development.

7.
African Journal of Pharmacy and Pharmacology ; 17(1):1-9, 2023.
Article in English | CAB Abstracts | ID: covidwho-2319486

ABSTRACT

Many studies have dealt with the medicinal properties of Jatropha curcas;however, there are limited studies on the scope of its antiviral potential. This is a fact associated with the current challenges posed by HIV-AIDS and COVID-19, which has reinforced the need to expand the knowledge about its antiviral resource. Based on the search for natural products with anti-HIV-1 and anti-SARS-CoV-2 activities, this work analyzed the extract of J. curcas seed, the structure of the plant whose antiviral references were not found in the literature, and the compounds that can potentiate it as a candidate for herbal medicine. GC-MS analysis was used to screen for the active substances of the J. curcas seeds, and the literature was searched to find those with anti-HIV-1 and anti-SARS-CoV-2 indication. The results showed they have 27 compounds, of which glycerol 1-palmitate, stigmasterol and gamma-sitosterol were shown to have antiviral action in the literature. Regarding glycerol 1-palmitate, no detailed description of its antiviral action was found. Stigmasterol and gamma-sitosterol act as anti-HIV-1 and anti-SARS-CoV-2, respectively, inhibiting the reverse transcriptase of HIV-1, the proteases 3CLpro, PLpro and the spike proteins of SARS-CoV-2. However, despite the fact that the extract of J. curcas seeds consist of antiviral compounds that fight against the etiological agents of HIV-AIDS and COVID-19, it is concluded that there is a need to deepen this evidence, by in vitro and in vivo assays.

8.
Plant Archives ; 22(2):184-192, 2022.
Article in English | CAB Abstracts | ID: covidwho-2318867

ABSTRACT

The taxonomic diversity and the richness of the region of Seraidi (North-East Algeria) in medicinal plants, as well as the appearance of diseases of viral origin, in particular, the current pandemic of SARS-CoV-2, led us to the realization of an ethnobotanical survey of plants with antiviral interests. The survey was conducted based on a pre-established quiz, with 120 people from different categories of the population of Seraidi, with the aim of listing the medicinal plants used in the treatment of viral diseases and collecting as much information as possible on this subject. After analyzing, the information provided by the people interviewed, we listed 32 species belonging to 20 families, of which the Lamiaceae family is the most represented. Older women are the most affected by the use of plants;people without a higher intellectual level have the most knowledge about the use of plants with antiviral interest. The leaf is the most widely used organ, in the form of a decoction or infusion, administered orally.

9.
Research Journal of Pharmacy and Technology ; 16(3):1033-1040, 2023.
Article in English | CAB Abstracts | ID: covidwho-2316967

ABSTRACT

Aim: The contagious disease COVID 19 is a recently out-broken pandemic situation which threatens humankind all over the world. Siddha system of medicine is one of the traditional medical systems of India, which has provided a novel remedy for many epidemics like Dengue, Chicken guinea earlier. On evaluating the literature evidence and considering the mortality and severity of the disease, we have attempted to identify the possible inhibition of viral replication by "Karisalai Chooranam" - a polyherbal Siddha formulation which contains herbs like Karisalai (Wedelia chinensis), Thoodhuvelai (Solanum trilobatum), Musumusukai (Melothria maderaspatana) and Seeragam (Cuminum cyminum). The aim of this study was to identify the bioactive components present in Karisalai chooranam and pin down the components that inhibit COVID 19 protease by In Silico molecular docking analysis. Material and methods: The study was performed for the active compounds present in the herbs (Wedelia chinensis - Benzoic acid, Solanum trilobatum- Disogenin, Melothria maderaspatana- beta-sitosterol, Cuminum cyminum L- Coumaric acid and Limonene) with three potential targets, PDB id: 6LU7 3-chymotrypsin-like protease (3CLpro), PDB id: 6-NUR RNA dependent RNA polymerase and PDB id: 2AJF Angiotensin-converting enzyme II (ACE2) receptor using Autodock Vina. Key findings: The active phytocomponents present in "Karisalai chooranam" was found to inhibit the target 3CL proenzyme and hereby halt the formation of 16 non-structural proteins (nsp1-nsp16) that are highly essential for viral replication and there by prevents viral survival in the host environment. The phytocomponents also inhibited the target RNA dependent RNA polymerase (PDB)-6NUR RdRp which possess versatile action in mediating nonstructural protein (nsp 12) essential for viral replication. A significant binding against the target Angiotensin-converting enzyme II (ACE2) receptors - PDB- 2AJF was found which was recognized as a binding site for novel coronavirus to cause its pathogenesis. Among the five active components present in the herb, the binding ability of Disogenin and beta-sitosterol with COVID19 protease suggests a possible mechanism of protease inhibition and thus preventing viral replication. Significance: The results strongly suggest that phytocomponents of "Karisalai chooranam" may act as a potential therapeutic agent for the management of COVID-19 and related symptoms. Further, the efficacy of the active compounds should be tested in vitro before being recommended as a drug.

10.
Indonesian Journal of Cancer Chemoprevention ; 13(3):166-174, 2022.
Article in English | CAB Abstracts | ID: covidwho-2315348

ABSTRACT

SARS-CoV-2 genome encodes two large polyproteins (pp), pp1a and pp1ab which are cleaved and transformed into a mature form by a protease, non-structural protein 3 (NSP3). NSP3 is encoded by open reading frame (ORF) 1a/b. Curcuma longa (C. longa) or turmeric has been documented to have antiviral effects. The aim of this study was to assess the viral activities of C. longa against SARS-CoV-2 focusing on its potency to inhibit viral replication by targeting NSP3. PubChem databases were used to obtain the metabolic profile of C. longa. The compound's interaction with nucleocapsid was analyzed using molecular docking with Molegro Virtual Docker. Bioinformatics analysis based on rerank score presents all compounds of C. longa have higher binding affinity than the native ligand with cyclocurcumin as the lowest score (-128.38 kcal/mol). This anti-viral activity was hypothesized from the similarity of hydrogen bonds with amino acid residues Ser 128 and Asn 40 as key residues present in Ribavirin. This study reveals that C. longa is the potential to be developed as an antiviral agent through replication inhibition in SARS-CoV-2 targeting its replication mediated by NSP3.

11.
Avicenna Journal of Phytomedicine ; 13(3):231-239, 2023.
Article in English | CAB Abstracts | ID: covidwho-2314201

ABSTRACT

Objective: Ephedra herbs are the only extant genus in its family, Ephedraceae, and order, Ephedrales. It has been prescribed in traditional medicine for improving headaches and respiratory infections. On the other hand, because the coronavirus disease 2019 (COVID-19) causes respiratory problems and COVID-19 pandemic is the most widespread outbreak that has affected humanity in the last century, the current review aims using literature search to investigate the effects of the Ephedra herbs compounds on COVID-19 to supply a reference for its clinical application in the inhibition and remedy of COVID-19. Materials and Methods: This review was performed using articles published in various databases, including Web of Science, PubMed, Scopus, and Google Scholar, without a time limit. For this paper, the following keywords were used: "Ephedra", "coronavirus disease 2019", "COVID-19", "Severe acute respiratory syndrome coronavirus 2" or "SARS CoV 2". Results: The results of this review show that the Ephedra herbs have effectiveness on COVID-19 and its compounds can bind to angiotensin-converting enzyme 2 (ACE2) with a high affinity and act as a blocker and prevent the binding of the virus. Conclusion: Some plants used in traditional medicine, including the Ephedra herbs, with their active compounds, can be considered a candidate with high potential for the control and prevention of COVID-19.

12.
Genetics & Applications ; 6(2):31-40, 2022.
Article in English | CAB Abstracts | ID: covidwho-2293636

ABSTRACT

Essential role in replication and transcription of coronavirus makes the main protease of SARS-CoV-2 a great traget for drug design. The aim of this study was to predict structural interactions of compounds isolated from the Bosnian-Herzegovinian endemic plant Knautia sarajevensis (G. Beck) Szabo against the 3CLpro of SARS-CoV-2 virus. The three-dimensional crystal structure of SARS-CoV-2 main protease was retrieved from the RCSB Protein Data Bank and the three-dimensional structures of isolated compounds were obtained from the PubChem database. Active site was predicted using PrankWeb, while the preparation of protease and compounds was performed using AutoDock Tools and OpenBabel. Molecular docking was carried out using AutoDock Vina. Structural interactions are visualised and analyzed using PyMOL, LigPlus and UCSF Chimera. Apigenin, kaempferol, myricetin and quercetin showed the highest binding affinity for SARS-CoV-2 main protease and formed significant hydrogen bonds with the given protein. Results obtained in this study are in accordance with previous studies and showed that these compounds could potentially have antiviral effects against SARS-CoV-2. These findings indicate that K. sarajevensis could be potentially utilized as an adjuvant in the treatment of coronavirus disease 2019, but further pharmacological studies are required in order to prove the potential medicinal use of the plant.

13.
Postepy Fitoterapii ; 2:107-119, 2022.
Article in Polish | CAB Abstracts | ID: covidwho-2292353

ABSTRACT

The study is a review of natural raw materials that can prevent infection and help treat viral infections, including those that cause COVID-19. The condition of not getting infected with pathogens that cause infections of the upper and lower respiratory tract is high the body resistance. An important element that influences the proper immunity of the body is the diet. The functioning of the immune system is improved by bee products, and plant materials: purple coneflower herb, flower and root, licorice root, aloe gel and Baikal skullcap root, as well as black cumin seed oil, chaga mushroom, lemon balm leaves and chamomile flowers. Strengthening immunity is conducive to maintaining a good mood and reducing stress. The antiviral activity has been confirmed for many plant materials, especially those containing essential oils. Natural products can be used for prevention and treatment. The country that copes best with the coronavirus epidemic is China, thanks to a combination of academic and natural medicine. The study quotes an excerpt from the "Handbook of COVID-19 Prevention and Treatment", prepared by Chinese doctors, with particular attention to the recipes used by them.

14.
Salud, Ciencia y Tecnologia ; 2(8), 2022.
Article in Spanish | CAB Abstracts | ID: covidwho-2296449

ABSTRACT

The use of alternative medicine helps to prevent the symptoms generated by Covid-19, among the methods is phytotherapy or herbal therapy, homeopathy acupuncture, among others, all with different functions such as moxibustion, for coughs, flu, lungs, pain body, breathing, etc. Although some people do not use it due to the few results in improving their health. In this article, the use of alternative medicine to treat symptoms of Covid-19 was analyzed through a quantitative exploratory approach, the population was taken through a simple random non-probabilistic sampling of 40 people from the Banos parish of Ulba between 30 At 60 years as results it was obtained that, among the most frequently used methods was phytotherapy with 65%, followed by homeopathy with 15% and acupuncture with 12,5%. It was concluded that it is important to know the benefits that contributes to health using alternative medicine such as medicinal plants to improve health and in this case to a virus that has affected and caused the death of countless people.

15.
Acta Veterinaria et Zootechnica Sinica ; 53(11):4097-4109, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2269287

ABSTRACT

This study aimed to explore the protective mechanism of baicalein against porcine deltacoronavirus (PDCoV) infection. The targets of baicalein were obtained through Pharmamapper, Pubchem, STITCH, TCMSP and Swiss Targer Prediction databases, and the targets of PDCoV infection were obtained according to the proteomics data from our previous study. The targets of baicalein-PDCoV interaction were obtained and analyzed by STRING database and Cytoscape 3.8.2 software to construct a network diagram of "baicalein-PDCoV-targets". The CytoNCA was used to analyze network topology and core network construction. Metascape database was used for GO and KEGG analysis of core network genes. The expression levels of genes in the predicted signaling pathways were detected in vitro. A total of 268 potential targets of baicalein were screened out. There were 75 potential targets of baicalein-PDCoV infection. GO enrichment results showed that baicalein was mainly involved in the formations of membrane raft, spindle and mitochondrial membrane, cell cycle and MAPK signaling pathways. A total of 277 signaling pathways (P < 0.01) were screened out by KEGG enrichment. The PI3K-Akt, Ras and MAPK signaling pathways were the main pathways that involved in the protective effects of baicalein against PDCoV infection. The results showed that compared with the cellular control groups, the mRNA expressions of PI3K, AKT and NF-B significantly increased in the PDCoV infection group. Compared with the PDCoV group, treatment of baicalein significantly decreased the mRNA expressions of PI3K, AKT and NF-B (P < 0.05). The effect of baicalein on PDCoV infection has the characteristics of multi-targets and multi-pathways, through the intervention of AKT1, HSP90AA1, SRC, EGFR, CASP3, MAPK, STAT3 and other core genes in regulating PI3K-Akt signaling pathway, Ras signaling pathway and MAPK signaling pathway, apoptosis, and virus infection. These results suggested that baicalein could be a potential therapeutic drug against PDCoV infection for further study.

16.
International Journal of Life Sciences and Biotechnology ; 5(3):424-435, 2022.
Article in English | CAB Abstracts | ID: covidwho-2267610

ABSTRACT

The main protease (Mpro or 3CLpro) plays important roles in viral replication and is one of attractive targets for drug development for SARS-CoV-2. In this study, we investigated the potential inhibitory effect of lycorine molecule as a ligand on SARS-CoV-2 using computational approaches. For this purpose, we conducted molecular docking and molecular dynamics simulations MM-PB(GB)SA analyses. The findings showed that the lycorine ligand was successfully docked with catalytic dyad (Cys145 and His41) of SARS-CoV-2 Mpro with binding affinity changing between -6.71 and -7.03 kcal mol-1. MMPB(GB)SA calculations resulted according to GB (Generalized Born) approach in a Gibbs free energy changing between -24.925-+01152 kcal/mol between lycorine and SARS-CoV-2 which is promising. PB (Poisson Boltzmann) approach gave less favorable energy (-2.610..0.2611 kcal mol-1). Thus, Entropy calculations from the normal mode analysis (S) were performed and it supported GB approach and conducted -23.100..6.4635 kcal mol-1. These results showed lycorine has a druggable potential but the drug effect of lycorine on COVID-19 is limited and experimental studies should be done with pharmacokinetic modifications that increase the drug effect of lycorine.

17.
International Journal of Clinical Pharmacology and Therapeutics ; 61(2):74-89, 2023.
Article in English | GIM | ID: covidwho-2262054

ABSTRACT

Purpose: Coronavirus disease 2019 (COVID-19) has emerged as a serious threat to public health;anticancer-repositioning treatment strategy has been formulated to treat the disease. However, evidence supporting the efficacy and safety of repositioned anticancer treatment in treating COVID-19-infected non-cancer patients (CINPs) is limited. Therefore, this study analyzed published randomized controlled trials (RCTs) evaluating the impact of anticancer drugs compared to current standards of care (SOCs) on CINP treatment. Materials and methods: The PubMed and Embase databases were searched to identify eligible RCTs. Outcome measures included mortality, the use of mechanical ventilation (MV), and serious adverse events (SAEs). Results: 25 RCTs were reviewed in our study. Compared to SOCs, repositioned anticancer therapy for treating CINPs was associated with mortality reduction (odds ratio (OR) = 0.78, 95% confidence interval (CI) = 0.65 - 0.94, p = 0.01). Using the repositioned anticancer treatment exhibited statistically significant reduction, in both the number of CINPs using MV (OR = 0.67, 95% CI = 0.51 - 0.88, p = 0.004) and experiencing SAEs (OR = 0.79, 95% CI = 0.69 - 0.91, p = 0.0009). Conclusion: Conclusively, repositioned anticancer treatment was shown significant differences from SOCs in treating CINPs, which appears to be more associated with mortality, MV use, and SAE development reduction in CINPs.

18.
Munis Entomology & Zoology ; 18(1):248-267, 2023.
Article in English | CAB Abstracts | ID: covidwho-2261885

ABSTRACT

This article sums up the possible impact of honey in the amelioration of COVID-19 induced recognized pathogenesis. The pandemic due to the current outbreak of COVID-19 infected thousands of individuals round the globe. The indicator of COVID-19 infection suggests that increased inflammation, oxidation, and an overstressed immune reaction are key contributor of COVID-19 pathogenesis. This overstressed immune response leads to numerous cytokine production and consequently and led to the development of severe injury in lungs (ALI)/acute respiratory distress disorder and in some conditions becomes reason of death. Honey is formed when honey bees collect nectar from various, and then process it to form the honey. It is a natural remedy to reduce the incidence of various diseases, due to its potential anti-inflammatory, anti-oxidative, immune booster, antiviral, anti-diabetic, antimicrobial, anti-proliferative, cardiovascular, neurological and gastrointestinal diseases and anti-metastatic properties. Honey has been used for the curing of bronchial asthma, throat infections, tuberculosis, thirst, hiccups, fatigue, and hepatitis and also for the ALI/ARDS treatment caused by virus or any other pathogen. Doctors recommend honey as a nutritional supplement to boost the immunity of patients under critical conditions, reducing oxidative stress, inflammation, viral infections that confirm that honey may be used to combat the infection and other complications caused by COVID-19 pandemic. There are many reports which reveal that honey may be used in bacterial and viral infections such as COVID-19, however, further experimental studies are required to validate these speculations.

19.
Journal of Bioresources and Bioproducts ; 6(4):279-291, 2021.
Article in English | CAB Abstracts | ID: covidwho-2253861

ABSTRACT

Unique plants and their properties, once considered synonymous to medicine, remain a potent source for new compounds in modern science. Plant polyphenols and natural products continue to be investigated for effective treatments for the most persistent of human ailments. In this review, fifty novel plant phenolic compounds have been compiled and briefly described from the previous five years. Select compounds and notable plant species from genus Morinda and Sophora are further expanded on. Traditional medicine plants often contain rich and diverse mixtures of flavonoids, from which rare compounds should receive attention. The bioactivity of crude plant extracts, purified compounds and mixtures can differ greatly, requiring that these interactions and mechanisms of action be investigated in greater detail. Novel applications of uncommon natural products, namely mimosine and juglone, are explored within this review. The 2019 coronavirus pandemic has resulted in abrupt spike of related scientific publications: speculation is made regarding plant natural products and future of antiviral drug discovery.

20.
Gaceta Medica Estudiantil ; 3(1), 2022.
Article in Spanish | CAB Abstracts | ID: covidwho-2253642

ABSTRACT

Introduction: in the face of the health emergency, Cuban science undertook a series of protocols with the aim of achieving an effective treatment against COVID-19, thus giving rise to a homeopathic preparation called PrevengHo..-Vir. The trial has not yet finished and there remains a gap of doubts regarding the possible adverse reactions that the preparation could cause. Background: to characterize clinically and epidemiologically five towns' populations that consumed the homeopathic preparation and to identify the main adverse reactions reported by the patients under study. Method: an observational, descriptive, cross-sectional study was carried out in five towns in the municipality of Santa Clara, with the total of patients who used the preparation;with the sample being N=505. Results: a ratio of men and women of 1:1 is presented, with an average of 44.3 years of age, 63.7% have a high school degree (above 12th grade), only 4.8% used the preparation incorrectly, of which 3.2% had a low educational level. A total of 13 subjects presented reactions. Conclusions: Most of the adverse reactions are mild and do not require urgent medical attention. The homeopathic preparation PrevengHo..-Vir is safe and without risk to the lives of consumers.

SELECTION OF CITATIONS
SEARCH DETAIL